
Pulsed NMR of Ferroin and Ferriin
 Jordan J. Gosselin, and Cassandra S. Niman
 Modern Physics Lab 173, Bio&Quantum, University of California, San Diego
 June 13, 2008

Introduction:
 Pulsed NMR is used to characterize spin-spin and spin-lattice interactions. Due to our
interest in the ferroin catalyzed B-Z reaction we attempted to characterize ferroin and ferriin
using pulsed NMR with hopes to run the pulsed NMR on a B-Z reaction and observe changes
from ferroin to ferriin in the reaction. This reaction could not be imaged using NMRI as reported
by Ying Gao et.al.
 Characterizing T2 for ferriin gave expected results, while finding T2* for proved difficult
due to the low signal to noise observed. The FID of ferroin was observed as expected, and T2*
was characterized. Attempting to measure T2 for ferroin lead to interesting observations of phase
shifting in the spin-echo, which lead to an inability to properly characterize T2 and question the
accuracy of the results found for ferriin T2.

Background:
 Pulsed NMR is a spectroscopy technique that takes advantage of the intrinsic particle
property of spin. Specifically, it focuses on the spins of the protons in the nucleus. The
methodology involves placing a sample within a set of orthogonal coils, which comprise the x, y,
and z-axis. We have defined the x-direction as the transmission coil, the y-direction as the
reception coil, and the z-direction is our magnet coil. A DC current is fed through the magnetic
coils to create a magnetic field, Bo, in the z-direction.

 The spin state of each proton in a nucleus has a magnetic
moment given by µ = γ*S (underlined variables represent vectors;
S is the spin vector, γ is the gyromagnetic ratio). The energy of the
state is determined by the inner product of the magnetic moment
with the magnetic field (E = -µ·B). Because Bo is only in the z-
direction only the z component of µ is important. This component
is given by µz = ћm, where m = ± ½ for protons.

The above is a quantum mechanical description of the system; we are only concerned
with the net effects of these magnetic moments, so we will treat NMR classically with the
exception of the preceding explanation of magnetic moments due to spin. The individual
magnetic moments due to spin can be summed into a net magnetic moment, which is what is
seen with the receptor coils. The ratio of the populations of the spin up and spin down states (S+
and S- respectively) can be estimated by the Maxwell-Boltzmann distribution. The equation is
(Number S+)/(Number S-) = exp(-ΔE±/kT), where k is Boltzmann’s constant (Pochapsky 28).
The net magnetic moment is directly proportional to this difference in the population of the spin
states.

This net magnetic moment precesses about the z-axis with

an angular frequency given by ω = γ*Bo. For the purposes of our
experiment we tuned Bo to give an ω of ~2*π*8 MHz. This was
done because we were using a function generator that generated
~8 Mhz sine waves.

The main idea of NMR is to rotate this net magnetic moment into the x-y plane; here we

can measure it’s amplitude and determine the time it takes to relax to it’s initial state. This is
most easily visualized in a reference frame rotating at the same frequency as ω. In this reference
frame ω’ = γ* Bo’. Since our reference frame rotates at ω with respect to the laboratory frame
ω’ = 0, therefore Bo’ = 0. The net magnetic moment is stationary in this frame. We apply an 8
MHz pulse in the x-direction in the laboratory frame. In the rotating frame this appears to be a
stationary magnetic moment in the x’ direction due to the decomposition of the 8 MHz sine wave
into two vectors rotating with opposite ω (an interested reader should refer to the first chapter of
Bruch’s book; all others must accept this as true). This moment provides a torque on the
magnetic moment for the duration of the pulse width. This will rotate the magnetic moment
around the x’ axis (rotating frame) an angle θ given by the equation θ = γ* Bx (where Bx is the
peak amplitude of the oscillating magnetic field applied in the laboratory frame). The equation
for θ can be easily derived from the equation for ω.

When the magnetic moment is rotated into the x-y plane the net magnetic moment will
decrease due to the phase spreading in the x-y plane caused by inhomogenity of the magnetic
field throughout the sample.

The above is the phase spreading in the rotating reference frame. This relative phase

spreading can be utilized to characterize a substance in pulsed NMR.
The main idea behind pulsed NMR is to use pulses with an angle of π or π/2 in sequence to
measure various characteristic relaxation times.

Methodology:
For our project we used a pulse generating/data acquisition MatLab code developed by Erik
Flister combined with a simple averaging routine designed by Jordan Gosselin. This allowed us
to perform multiple trials and average the results extremely rapidly. The mode of the dataset
sizes was 64 trials; the data taking/averaging process for these trials took approximately thirty
seconds to one minute.

We measured T2 and T2* for ferriin and ferroin respectively. We applied a pulse with an
angle of π/2 followed by a pulse with an angle of π in an attempt to recover a spin echo and
measure T2. This is a common technique, which is mentioned in all the books we referenced
(bibliographical information given following the report).

Another method we used was the Carl-Purcell method. This method uses multiple π

pulses following the initial π/2 pulse. We attempted to use this method unsuccessfully. Our
problems are discussed in the “Experimental Results” section below.

Experimental Results:

Our measurements are of ferroin and ferriin. We tried to characterize T2 for these
samples. By changing the time the pulses were high and maximizing the amplitude of the FID
and Spin Echo we found the time length of a π/2 and π pulse for each sample. Ferroin and ferriin
have a π/2 pulse size of 25µs and 10µs respectively. For each sample the length of the pulses
stayed constant for the remainder of our measurements. For each setting of τ, the time between
the pulses, 64 or 128 raw data samples were acquired and averaged. This produces a smooth data
set to start with.

Fig1: 64 averaged data sets taken of ferroin. There is a clear FID and spin-echo as expected.
The strange shape of the second pulse is likely due to an overlapping of the pulse and the tail of the FID.

Ferriin Data & Analysis:
 A π/2 pulse for ferriin is about 10µs. The data for the FID following the π/2 pulse is
shown below. Because the signal is so small most of it gets lost in the noise, there is no clear
exponential decay of the peaks, and this data could not be used to characterize T2*

Fig2: FID for Ferriin sample. Fig3: Spin-echoes for Ferriin

However the spin-echo data for this data set looked as expected. The amplitude of the spin-echo
decays exponentially as τ increased. There is a DC-offset for each averaged data set above. To
quickly get rid of this, 30 points past all the echoes, noise about the GND signal, were averaged
and subtracted from the data. The peaks fit to an exponential decay resulting in the equation:

V(t) = 0.0062 exp(-t/5000) ; here T2 = 5000µs.

Fig6: Ferriin spin-echoes after DC-offset adjustments Fig7: Peaks of Ferriin spin-echoes. Fit to the curve:

V(t) = 0.0062 exp(-t/5000)

Ferroin Data & Analysis:

As previously stated the π/2 pulse for ferroin was measured around 25µs. The data used
to characterize at the FID observed is a set of more than 1150 raw data sets averaged. This was
used to find T2*.

Fig5: Taking the natural log of the peaks
Fig4: FID for averaged Ferroin data with no DC-offset. and subtracting any remaining DC offset the

peaks fit to:V(t) = -t/92.59 - 0.1024

The FID for Ferroin is very clear. We removed the DC offset in the same way explained

above. The natural log of the peaks was fit to a line. The T2* factor here is 92.59µs.

To try to get a more accurate fit we used fitting software to fit a sinusoidal exponential
decay to the FID, first using a constant T2* of 92.56µs and ten letting T2* vary.

Fig6: Sinusoidal exponential decay fit of FID using Fig7: Curve fit allowing T2* to vary giving

T2* = 92.56µs T2* = 73.44µs

The data for the spin echo, which would give us, a T2 value is shown below.

Fig8: Ferroin spin-echoes, 20 data sets for different τ.

Fig8: Ferroin spin-echoes, 20 data sets for different τ. Fig9: Close up of phase-shifted spin-echoes.

In fig8 you can see the phase shifts of the spin echoes. The signal is read from a coil in
the y-direction, but part of the spin-echo amplitude is in the x-direction for many of the data
taken. Without knowing the actual phase change or the full amplitude there is no way to find a
T2 value.

This phase shift is most likely due to the median angular velocity of the relative phases
not matching perfectly with the applied field of 8 MHz. To confirm this effect resembles a phase
shift we modeled the spin echo as a cosine function with its amplitude modulated by a Gaussian
function centered at a half period of the cosine.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0

_1.0

_0.5

0.5

1.0

0.2 0.4 0.6 0.8 1.0

_1.0

_0.5

0.5

1.0

Above you can see this function with the cosine function phase shifted by pi. This

appears similar to the ideal spin echo. Next to that is the cosine function phase shifted by +pi/2
and – pi/2. You can see that these resemble our non-ideal spin echoes.

Due to these irregular phase shifts, proper spin echo amplitude was hard to measure. It
was for this reason that we resorted to measuring T2* off of the FID. The phase of the FID was
very consistent from trial to trial, and its amplitude was large; this allowed for easy
measurement.

One method commonly used for measuring T2 is the Carl-Purcell method. However, we
were unsuccessful in using this method successive spin echoes would not be in phase. This
made it difficult to measure the decrease in amplitude.

In the picture above the first four spin echoes are shown. It can be seen that each spin

echo is out of phase with the previous spin echoes.
A modification to this technique was suggested by Meiboom and Gill (Brey 9) to

overcome this phase problem by shiftime the phase of the 180-degree pulse by 90-degrees
(transmitting across the x and y axis alternately). However, the lab equipment is currently set for
reception in only one direction and transmission in only one other, orthogonal direction so we
were unable to attempt this technique. Suggestions of how future lab groups might attempt to get
around this problem are in the next section.

We do not consider our results very accurate. Although we do not see it in the ferriin
data, the phase shift effect give major cause for concern with our ferriin T2 results. Also T2 and
T2* are theoretically closely related, but in our data for ferriin and ferroin they seem to be
different by orders of magnitude. There is much to be desired of the data, and because of this
included is another section to address possible improvements for the next lab group.

Recommendations for Future Experiments:

Firstly we suggest that a T1 measurement is made, this measurement is known to be
easier to make, and might give more insight into the spin-lattice interactions in the sample. As
for T2 measurements the phase shift in the spin-echo needs to be addressed. We think this
inconsistent phase is due to an unstable magnetic field. If the magnetic field is not constant in the
z-direction the rotation of the magnetic moment may be out of phase with the 8Mhz pulse
supplied in the x-direction. We changed the magnetic field to try to get it in phase, but were
unable to keep a steady current flow into the magnetic could. To test this a hall probe could be
used to see how stable the magnetic field is. A way to measure the full spin echo even with an
unstable magnetic field is to not only measure from the y-direction but also the x-direction. This
means using the coil currently used for transmitting, in the x-direction, to also receive. With this
information the entire amplitude of the spin-echo in the x-y plane could be calculated. Finally we
would like to recommend that a measurement of a ferroin catalyzed B-Z is done once ferriin and
ferroin are correctly characterized. This can be done with the current data acquisition system. It
would be interesting to see if the oscillating reaction could be detected. Tests have been done to
test if the ferroin catalyzed B-Z could be imaged using NMRI and it was found to be difficult to
image the reaction, but using the pulsed NMR there may be interesting results.

Works Referenced:

Magnetic Resonance Imaging of Ruthenium-, Cerium-, and ferroin-Catalyzed Belousov-Zhabotinky
Reactions

Gao, Y., Cross, A.R., and Armstrong, R.L.
J.Phys. Chem, 100, 2, 10159 – 1016, 1996, 10.1021/jp9531691

Bruch, Martha. Nmr Spectroscopy Techniques. New York: M. Dekker, 1996.

Cowan, B. Nuclear Magnetic Resonance and Relaxation. Cambridge: Cambridge University Press, 1997.

Pochapsky, , Thoma et.al. Nmr for Physical and Biological Scientists. Washington: Taylor & Francis, 2007.

Brey, Wallace. Pulse Methods in 1d and 2d Liquid-Phase Nmr. Boston: Academic Press, 1988.

**All these books are available in the Science and Engineering library at UCSD

Special Thanks
Erik Flister – Excellent MatLab coding, really the only thing that got the experiment of the ground.

Freaking awesome.
Earl Dolnick – Resident pulsed NMR enthusiast ad best B-field tuning, spin-echo finder we know.

Professor Kleinfeld – Got the equipment we needed, and all the ferriin from horse spleen we never dreamed of.
Jordan Gosselin – Showed the data who’s boss, and made many graphs with pretty colors.

Cassandra Niman – Created vector diagrams for describing NMR theory, painstakingly, by hand. Also
discovered some totally sweet transitions for our presentation; they kept everyone awake, except Prof. Kleinfeld.

This is a copy of the data acquisition and Pulse code developed by Erik Flister, with a short data averaging
sequence developed by Jordan Gosselin. It has been included with the report for the sake of preserving Erik’s
work on David Kleinfeld’s class website forever, or for the duration that Dr. Kleinfeld maintains his website,
whichever is shorter.

function pulseUIerror
%%%%%%%%%%%%%%%%%%%%%%%%
% parameters to set

hpath='C:\Program Files\National Instruments\NI-DAQ\DAQmx ANSI C Dev\include\NIDAQmx.h';
libpath='C:\WINNT\system32\nicaiu.dll'; %WINNT

recordingPath='C:\Documents and Settings\Undergrad Labs\Desktop\recordings\DeleteisOKFerroinOnePi';

pulseDev='Dev1';
counterNames={'/ctr0','/ctr2'}; %pulseA pulseB (can't use ctr1, cuz numPiPulses>1 causes us to use coupled
counters)
recordingDev='Dev2';
recordingChans=[0 1]; %data pulses

numTrials=16; %trials per recording
trialGap=.1; %in seconds

dPulse=10; %default pulseA microseconds
dGap=100; %default gap microseconds
mPulse=10000; %max pulseA microseconds
mGap=mPulse; %max gap microseconds

pulseFactor=2; % scale factor for pulseB duration (in terms of pulseA duration)
gapFactor = 2;
numPiPulses=10;
%%%%%%%%%%%%%%%%%%%%%%%%

clc
close all
format long g
daqreset

disp('initializing nidaqmx...')

% if length(recordingChans)~=length(counterNames)+1
% error('must supply one more recordingChan than counterNames')
% end

left = 100;
bottom = 300;
width = 700;

margin = 25;
bWidth = 60;
bHeight = 30;
sWidth = width-2*margin;
sHeight = 20;
aHeight = 100;

tWidth = sWidth;
tHeight = 15;
tMargin = 5;

height = 6*margin+aHeight+2*tHeight+2*sHeight+bHeight;

hMainFigure = figure(...
 'MenuBar','none', ...
 'Toolbar','none', ...
 'Name', mfilename, ...
 'NumberTitle','off', ...
 'Position',[left bottom width height], ...
 'Resize', 'off',...
 'Units','pixels',...
 'CloseRequestFcn',@closeCallback,...
 'Visible','off');
hPlotAxes = axes(...
 'Parent', hMainFigure, ...
 'Units', 'pixels', ...
 'Position',[margin 2*margin width-2*margin aHeight]);
hUpdateButton = uicontrol(...
 'Style','togglebutton', ...
 'Parent', hMainFigure, ...
 'Units','pixels',...
 'Position',[margin 5*margin+aHeight+2*sHeight+2*tHeight bWidth bHeight],...
 'String','Start',...
 'Value',false,...
 'Callback', @hUpdateButtonCallback);
hPulseSlider = uicontrol(...
 'Parent', hMainFigure, ...
 'Style','slider',...
 'Units','pixels',...
 'Position',[margin aHeight+4*margin+sHeight+tHeight sWidth sHeight],...
 'Max',mPulse,'Min',1,'Value',dPulse,...
 'SliderStep',[1 10]/(mPulse-1),...
 'Callback', @hSliderCallback);
hGapSlider = uicontrol(...
 'Parent', hMainFigure, ...
 'Style','slider',...
 'Units','pixels',...
 'Position',[margin aHeight+3*margin sWidth sHeight],...
 'Max',mGap,'Min',1,'Value',dGap,...
 'SliderStep',[1 10]/(mGap-1),...
 'Callback', @hSliderCallback);
hPulseText = uicontrol(...
 'Parent', hMainFigure,...
 'Style','text',...
 'Units','pixels',...
 'Position',[margin aHeight+4*margin+2*sHeight+tHeight+tMargin tWidth tHeight-tMargin],...
 'String','',...
 'HorizontalAlignment','left');
hGapText = uicontrol(...
 'Parent', hMainFigure,...
 'Style','text',...
 'Units','pixels',...
 'Position',[margin aHeight+3*margin+sHeight+tMargin tWidth tHeight-tMargin],...

 'String','',...
 'HorizontalAlignment','left');

running=false;
pulses=false;
nidaqmx='nidaqmx';
tasks={};
update();
initNidaq();
set(hMainFigure,'Visible','on');

 function closeCallback(src,event)
 if running || pulses
 errordlg('can''t close while running -- wait for stop or hit stop.','error','modal');
 else
 cleanup();
 end
 end

 function hUpdateButtonCallback(hObject, eventdata)
 running=~running;
 update();
 end

 function hSliderCallback(hObject, eventdata)
 set(hObject,'Value',round(get(hObject,'Value')));
 update();
 end

 function update
 set(hUpdateButton,'Value',running);
 if running
 set(hUpdateButton,'String','Stop');
 else
 set(hUpdateButton,'String','Start');
 end

 set(hPulseText,'String',sprintf('Pulse: %g us',get(hPulseSlider,'Value')));
 set(hGapText,'String',sprintf('Gap: %g us',get(hGapSlider,'Value')));

 p=zeros(ceil(1.25*(mGap+(1+pulseFactor)*mPulse)),2);
 p((1:get(hPulseSlider,'Value'))+1,1)=1;
 p((get(hPulseSlider,'Value')+get(hGapSlider,'Value'))+(1:pulseFactor*get(hPulseSlider,'Value'))+1,2)=1;
 plot(hPlotAxes,0:length(p)-1,p);
 set(hPlotAxes,'YTick',[]);
 xlabel(hPlotAxes,'microseconds');
 ylim(hPlotAxes,[-1 2]);
 xlim(hPlotAxes,[0 size(p,1)-1]);

 if running && ~pulses
 startPulses();
 end
 end

 function ai=startRecording
 warning('off','MATLAB:MKDIR:DirectoryExists');

 mkdir(recordingPath);
 warning('on','MATLAB:MKDIR:DirectoryExists');

 ai = analoginput('nidaq',recordingDev);
 set(ai,'SamplesPerTrigger',inf);
 addchannel(ai,recordingChans);

 sr=propinfo(ai,'SampleRate');
 sr=setverify(ai,'SampleRate',max(sr.ConstraintValue));
 sr=setverify(ai,'SampleRate',1000000);
 disp(sprintf('sampling at %d hz',sr));
 %set(ai,'Coupling','DC');
 disp(sprintf('coupling is %s',ai.Channel(1).Coupling))
 %ai.Channel.Coupling = 'DC';
 disp(sprintf('input type is %s',get(ai,'InputType')))
 %pseudodifferential input: channels
 %all referred to a common ground but this ground is not connected to the computer
 %ground.
 %set(ai,'InputType','SingleEnded');
 d=daqhwinfo(ai);
 %d.InputRanges
 maxGain=d.InputRanges(find(diff(d.InputRanges')==min(diff(d.InputRanges'))),:);
 ir=setverify(ai.Channel(1),'InputRange',maxGain); %sets gain
 disp(['InputRange: ' num2str(ir)]);

 ir=setverify(ai.Channel(2),'InputRange',[-10 10]); %sets gain

 set(ai,'LogFileName',fullfile(recordingPath,sprintf(['recording.usPulse.%d.usGap.%d.' datestr(now,30)
'.daq'],get(hPulseSlider,'Value'),get(hGapSlider,'Value'))));
 set(ai,'LoggingMode','Disk'); %Disk&Memory

 start(ai)

 while ~strcmp(get(ai,'Logging'),'On')
 %block til ai started, otherwise miss first few pulses
 end
 end

 function startPulses
 if ~pulses && running

 pulses=true;

 ai=startRecording();

 usPulse = get(hPulseSlider,'Value');
 usBtwPulses = get(hGapSlider,'Value');

 taskname='pulses';

 %constants from NIDAQmx.h
 cDAQmx_Val_Hz = 10373;
 cDAQmx_Val_Low = 10214;
 cDAQmx_Val_ContSamps = 10123;
 cDAQmx_Val_FiniteSamps = 10178;
 cDAQmx_Val_Seconds = 10364;

 cDAQmx_Val_Falling = 10171;
 cDAQmx_Val_WaitInfinitely = -1.0;

 if isempty(tasks)
 try
 for i=1:length(counterNames)
 task=libpointer('uint32Ptr',0);
 [errCode gTaskname tasks{i}]=calllib(nidaqmx,'DAQmxCreateTask',[taskname num2str(i)],task);
 %task is supposed to come back as a uint32Ptr, but it's just a uint32
 checkErr(errCode,'DAQmxCreateTask');
 end

 % docs claim that for cDAQmx_Val_Low, pulse will start in hi phase
 errCode=calllib(nidaqmx,'DAQmxCreateCOPulseChanTime',tasks{1},[pulseDev
counterNames{1}],'',cDAQmx_Val_Seconds,cDAQmx_Val_Low,0,usPulse/(2*1000000),usPulse/1000000);
 checkErr(errCode,'DAQmxCreateCOPulseChanTime');

 errCode=calllib(nidaqmx,'DAQmxCreateCOPulseChanTime',tasks{2},[pulseDev
counterNames{2}],'',cDAQmx_Val_Seconds,cDAQmx_Val_Low,usBtwPulses/1000000,gapFactor*usBtwPulses/10
00000,pulseFactor*usPulse/1000000);
 checkErr(errCode,'DAQmxCreateCOPulseChanTime');

 if numPiPulses>1

errCode=calllib(nidaqmx,'DAQmxCfgImplicitTiming',tasks{2},cDAQmx_Val_FiniteSamps,numPiPulses);
 checkErr(errCode,'DAQmxCfgImplicitTiming');
 end

 [errCode]=calllib(nidaqmx,'DAQmxCfgDigEdgeStartTrig',tasks{2},['/' pulseDev
'/Ctr0InternalOutput'],cDAQmx_Val_Falling);
 checkErr(errCode,'DAQmxCfgDigEdgeStartTrig');

 rR=libpointer('doublePtr',0); %assume same for all channels...
 [errCode garbage rR]=calllib(nidaqmx,'DAQmxGetCOCtrTimebaseRate',tasks{1},[pulseDev
counterNames{1}],rR);
 checkErr(errCode,'DAQmxGetCOCtrTimebaseRate');
 disp(sprintf('counter master timebase: %g',rR))
 disp(sprintf('generating %d double pulse trials',numTrials));

 for t=1:numTrials
 for i=length(tasks):-1:1
 [errCode]=calllib(nidaqmx,'DAQmxStartTask',tasks{i});
 checkErr(errCode,'DAQmxStartTask');
 end

 [errCode]=calllib(nidaqmx,'DAQmxWaitUntilTaskDone',tasks{end},cDAQmx_Val_WaitInfinitely);
 checkErr(errCode,'DAQmxWaitUntilTaskDone');

 for i=1:length(tasks)
 [errCode]=calllib(nidaqmx,'DAQmxStopTask',tasks{i});
 checkErr(errCode,'DAQmxStopTask');
 end

 if ~running
 break
 end

 if mod(t,100)==0
 disp(sprintf('done w/trial %d of %d',t,numTrials))
 end

 tic;
 while toc<trialGap %pause is unreliable, can return too soon!
 end
 end

 disp('pulses stopped')

 for i=1:length(tasks)
 errCode=calllib(nidaqmx,'DAQmxClearTask',tasks{i});
 checkErr(errCode,'DAQmxClearTask');
 end
 tasks={};
 catch
 x=lasterror;
 x.message
 x.stack.line
 cleanup();
 end
 else
 error('startPulses called with nonempty tasks')
 end

 stop(ai);

 while strcmp(get(ai,'Logging'),'On')
 %block til ai stopped, otherwise might read unfinished file
 end

 if true
 [data,time,abstime,events,info] = daqread(get(ai,'LogFileName'),'DataFormat','Native');
 %Jordan added this
 %And he really hopes it will work
%--
 %This is now set up to average straight out of pulseui

clear datasplit
clear average
index = 0;
%changes hPipulse
hPipulse = get(hPulseSlider,'Value');
%changes gap
Gap = get(hGapSlider,'Value');

flag= 0;

v = 1;
kend = length(data);
k = v;

while(v <= kend)
for k = v:kend
 if (data(k,2)>1.0 && flag == 0)
 for n = 1:4
 if data(k+n,2) > 4.0
 flag = 1;
 index = index+1;
 break
 end

 end
 end

 if flag == 1
 if ((k+ceil((3*hPipulse+Gap+(0.05*(1e6)))-10))<=kend)

 datasplit(:,index) = data(k:k+ceil((3*hPipulse+Gap+(0.05*(1e6)))-10),1);
 end
 flag = 0;
 v = k + ceil((3*hPipulse+Gap+(0.05*(1e6)))-10);
 break
 end

end
if ((kend - k)<=ceil((3*hPipulse+Gap+(0.05*(1e6)))-10))

 break

end

end
clear abstime data ans events flag info k kend n printk time v
average = mean(datasplit(:,:),2);
matsave = sprintf('C:\\Documents and Settings\\Undergrad
Labs\\Desktop\\recordings\\usPulse.%d.usGap.%d.%s.mat',hPipulse,Gap,datestr(now,30));
save(matsave,'average','datasplit');
display(['Average saved under name: ' matsave])
display('Number of data points taken:')
display(index)
clear average index datasplit hPipulse Gap

%---

 %figure
 %plot(time,data)
 %xlabel('seconds'), ylabel('volts')
 end

 delete(ai);

 %analyzePulses(data(:,[1:length(counterNames)]),time);

 running=false;
 pulses=false;
 update();

 else
 pulses
 running
 error('startPulses called with pulses==true or running==false')
 end
 end

 function analyzePulses(data,time)
 figure
 bins=100;
 d=diff(data>1);
 [rups cups]=find(d>0);
 [rdowns cdowns]=find(d<0);
 for j=1:size(d,2)
 p{j,1}=time(rups(cups==j))*1000000;
 p{j,2}=time(rdowns(cdowns==j))*1000000;

 if length(p{j,1})~=length(p{j,2})
 disp(sprintf('chan: %d, num ups: %d, num downs: %d',j,length(p{j,1}),length(p{j,2})))
 error('pulse edge problem')
 end

 subplot(size(d,2)+2,2,2*j-1)
 hist(p{j,2}-p{j,1},bins);
 xlabel('microseconds')
 ylabel('count')
 title(sprintf('pulse %d: %d total',j,length(p{j,1})))

 subplot(size(d,2)+2,2,j*2)
 plot(p{j,2}-p{j,1})
 ylabel('microseconds pulse width')
 xlabel('pulse number')
 end

 if length(p{1,1})~=length(p{2,1})
 disp(sprintf('chan 1: %d pulses, chan 2: %d pulses',length(p{1,1}),length(p{2,1})))
 error('didn''t see same number of pulses in each channel')
 end

 subplot(size(d,2)+2,2,2*(size(d,2)+1)-1)
 hist(p{2,1}-p{1,2},bins);
 title('gap lengths')
 xlabel('microseconds')
 ylabel('count')

 subplot(size(d,2)+2,2,2*(size(d,2)+1))
 plot(p{2,1}-p{1,2})
 ylabel('microseconds gap length')
 xlabel('gap number')

 p{1,1}=p{1,1}(2:end)/1000;
 p{2,2}=p{2,2}(1:end-1)/1000;
 subplot(size(d,2)+2,2,2*(size(d,2)+2)-1)
 hist(p{1,1}-p{2,2},bins);
 title('intertrial intervals')
 xlabel('milliseconds')

 ylabel('count')

 subplot(size(d,2)+2,2,2*(size(d,2)+2))
 plot(p{1,1}-p{2,2})
 ylabel('milliseconds intertrial interval')
 xlabel('intertrial interval number')
 end

 function initNidaq
 try
 [notfound warnings]=loadlibrary(libpath, hpath, 'alias', nidaqmx);
 catch
 x=lasterror;
 x.message
 x.stack.line
 cleanup();
 end
 end

 function checkErr(e,fcn)
 knownWarnings=[200010];
 %don't know why we're getting this:
 %warning 200010: Measurements: Requested value is not a supported value for this property.
 %Property: DAQmx_AI_Max
 %You Have Requested: 42.420000
 %(valid range is -42 to 42)
 %seems to be coming from matlab's data acq ai object, not our task

 lib=nidaqmx;
 if e~=0 && ~ismember(e,knownWarnings)
 sprintf('error in %s\n',fcn)
 if e>0
 sprintf('got warning %d',e)
 elseif e<0
 sprintf('got error %d',e)
 end

 try
 errBuff=libpointer();
 [errBuffSize errBuff]=calllib(lib,'DAQmxGetExtendedErrorInfo',errBuff,0);
 errBuff=repmat(' ',1,errBuffSize);
 [newerr errBuff]=calllib(lib,'DAQmxGetExtendedErrorInfo',errBuff,errBuffSize);
 if newerr~=0
 'why is newerr ~=0?'
 end
 errBuff
 catch
 x=lasterror;
 x.message
 x.stack.line
 end

 error([lib ' error'])
 end
 end

 function cleanup()
 lib=nidaqmx;
 if ~isempty(tasks)
 try
 for i=1:length(tasks)
 errCode=calllib(lib,'DAQmxClearTask',tasks{i});
 checkErr(errCode,'DAQmxClearTask');
 end
 catch
 x=lasterror;
 x.message
 x.stack.line
 end
 tasks={};
 end
 if libisloaded(lib)
 unloadlibrary(lib)
 end
 if strcmp(get(hMainFigure,'BeingDeleted'),'off')
 delete(hMainFigure)
 close all
 end
 end
end

